License: CC BY-NC 4.0

Oolit

Machine Learning backbone of CosmoTalker Orbitarium

Mission Brief

Oolit is a lightweight, specialized LoRA adapter fine-tuned on the distilgpt2 architecture. Designed to power the conversational AI capabilities of the CosmoTalker Orbitarium, it delivers efficient, accurate responses to astronomical queries while maintaining low inference latency.

distilgpt2 Base Architecture
1k+ Q&A Pairs
LoRA PEFT Adapter
v3.10+ Python Req

Features

Compute Efficient

Optimized for consumer hardware. Runs smoothly on modest GPUs thanks to the distilled base model.

Curated Dataset

Trained on a hand-verified dataset of space, astronomy, and physics questions for educational accuracy.

Plug & Play

Designed as a LoRA adapter. Easily attachable to existing transformers pipelines using PEFT.

Downloads

adapter_config.json SHA: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 485 B LoRA Configuration
adapter_model.bin SHA: a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6q7r8s9t0u1v2w3x4y5z6 320 MB Model Weights

Integration

Load Oolit using Hugging Face transformers and peft libraries.


# Install requirements: pip install transformers peft torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load Base Model
config = PeftConfig.from_pretrained("bhuvanesh-m-dev/oolit")
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")

# Attach Oolit Adapter
model = PeftModel.from_pretrained(model, "bhuvanesh-m-dev/oolit")

# Inference
prompt = "Q: What is a black hole?\nA:"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
                    

Prompt Template

Q: {question}\nA:

Limitations: As a distilled model, complex reasoning may be limited. Best suited for factual lookup and definitions within the astronomical domain.

Connect